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Abstract
We examine a family of difference equations, known as the Lyness mappings,
from the point of view of integrability. We show that the mappings satisfy two
different integrability criteria and are thus good integrability candidates. We
introduce an ansatz which reduces the mappings to bilinear form and we show
that the equations obtained are just reductions of the Hirota–Miwa equation
which establishes the integrable character of the Lyness mappings. Finally,
we discuss the construction of explicit invariants for some instances of the
mapping.

PACS numbers: 02.30.Ik, 02.40.Xx, 05.45.Yv

1. Introduction

The investigation of the integrable character of a given system, be it continuous or discrete,
usually comprises two phases. The first one is essentially exploratory. One examines the
system for integrability by testing whether known integrability criteria are satisfied. Sometimes
this is complemented by a numerical study of the behaviour of the system where smooth
behaviour constitutes an indication of integrability. If the first phase yields a positive result
and the system may be considered a serious candidate for integrability one proceeds to the
second phase of the investigation. The latter consists in trying to establish, usually through
a constructive approach, the integrable character. In some cases this means integrating the
system to some equation the integrability of which is already established. In other cases, it
may be sufficient to show that the system at hand is a reduction of some more general known
integrable system. Once the process has been completed with success one can at last claim to
have derived a new integrable system.

In the case of discrete systems, like the one that will be studied in this paper, the detection
of integrability usually proceeds through two well-established criteria. The first one, known
under the name of singularity confinement [1], is based on a property characterizing all
systems integrable by spectral methods, namely, that any singularity spontaneously appearing
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(due to the choice of initial conditions) disappears after a few iterations steps. The second
one is often referred to as ‘algebraic entropy’ [2]. Its proposal formalizes the observation
by Arnold [3] and Veselov [4] that the integrability of discrete systems is related to the slow
growth of some characteristic quantity. The precise algorithm, due to Viallet and collaborators
[2, 5], concerns rational mappings and computes the homogeneous degree of the numerator and
denominator of the iterates. An exponential increase is an indication of nonintegrability while
integrable mappings have a degree which grows polynomially with the number of iterations.

In this paper we shall consider the Lyness mappings [6, 7] which are usually presented
under the form

xn+Nxn = a + xn+1 + xn+2 + · · · + xn+N−1. (1.1)

A form more convenient for some of the calculations we shall perform is the discrete derivative
of (1.1):

xn+N(1 + xn) = xn+1(1 + xn+N+1). (1.2)

We will start by applying the two aforementioned discrete integrability criteria and show that
the Lyness mappings satisfy both of them. We will then proceed to bilinearize the mappings
and show that they are reductions of the Hirota–Miwa (discrete KP) equation [8, 9], thus
establishing their integrability. Finally, we will examine the integrals of the bilinear Lyness
mappings for low values of N based on recent results of Maruno and Quispel (MQ) [10], and
their relation to known invariants of (1.1).

2. Integrability criteria applied to the Lyness mapping

We shall start our investigation with the simplest nontrivial case, namely N = 2

xn+2xn = a + xn+1. (2.1)

This mapping is a well-known integrable one, being a member of the QRT [11] family. In order
to apply the singularity confinement we start from a finite value for xn and choose xn+1 = −a.
We obtain the following pattern {0,−1,∞,∞,−1, 0} and the subsequent xs are finite. Thus
the singularity of (2.1) is confined, as expected.

Next we examine the case N = 3:

xn+3xn = a + xn+1 + xn+2, (2.2)

i.e. we start from finite values for xn, xn+1 and choose xn+2 = −a−xn+1. We find the following
singularity pattern {0,−1, f1,∞,∞, g1,−1, 0}, where f1 and g1 are two finite expressions
involving xn, xn+1 and a. Again the singularity is confined.

We have obtained the singularity patterns for several more values of N. In every case we
found a confined singularity corresponding to the following pattern:

{0,−1, f1, f2, . . . , fN−2,∞,∞, g1, g2, . . . , gN−2,−1, 0}.
We surmise that this holds for all values of N, which would constitute a first indication of the
integrability of this mapping.

The second criterion we are going to apply is that of low growth. We found that the
easiest way to implement it is the one introduced by Halburd under the name of Diophantine
integrability [12]. Halburd considers the iterates of the mapping starting from rational initial
conditions (and rational values of the parameters, if any) and introduces the ‘height’ H(x)

of an element x defined as H = max(p, q) where x = p/q (with p/q irreducible). The
growth of H(xn) with n is a measure of the complexity of the mapping. In other words
too fast a growth of H(x) is considered incompatible with integrability. More precisely, the
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Diophantine integrability introduced by Halburd requires that the logarithmic height of iterates
h(xn) = log H(xn) grows no faster than a polynomial in n.

We have performed several numerical experiments on Lyness mappings for values of N
up to 20. We have started from integer initial conditions and some integer values for the
parameter a. Given the simplicity of the calculations several hundred of iterations can be
easily performed. The calculations are carried in rational arithmetic, the only simplification
being the factoring out of the greatest common divisor of numerator and denominator. We
have studied the limit hn/n2 when n → ∞ and found that for all Lyness mappings this ratio
converges to a finite number. This is another indication of integrability since it tells us that the
degree growth of the mapping is quadratic. The reason of this quadratic growth, independent
of the order of the mapping, i.e. of the value of N, will become apparent in the following
section.

The slow growth obtained in our calculations disappears immediately when we perturb
the mapping (for instance, by taking the coefficient of one of the terms in the summation on
the right-hand side of (1.1) different from unity). In this case, a significant growth index is
log hn/n. We have found that in the perturbed case this quantity converges to a finite value
indicating thus an exponential growth of the complexity of the iterates.

3. Bilinearizing the Lyness mapping

In the previous section, we have seen that the Lyness mappings satisfy two fundamental discrete
integrability criteria. They are thus excellent integrability candidates. In order to show that
the Lyness mappings are indeed integrable we shall make use of the bilinear formalism.

The first step towards the bilinearization of a given system is an ansatz where the nonlinear
variable, here x, is expressed in terms of τ -functions. In [13], we have shown how one can
use the information from the singularity structure of the solutions in order to propose the
adequate ansatz. Moreover a schematic singularity pattern, like the one presented in section 2,
suffices. We also surmised that the number of τ -functions is related to the number of different
singularity patterns. Oversimplifying the situation we may say that if only one singularity
pattern exists, a single τ -function may suffice. Moreover, since τ -functions are entire, the
nonlinear variable must be expressed in terms of ratios of products of such functions. Since
for the Lyness mapping x assumes the values of 0 and −1, and diverges at precise positions
the following ansatz may be proposed:

xn = An

τn−Nτn+N+1

τnτn+1
= −1 − Bn

τn−N+1τn+N

τnτn+1
. (3.1)

Through a gauge transformation one can set B to one without loss of generality. It is elementary
to check that this reproduces the singularity pattern of the Lyness mapping. Moreover,
substituting (3.1) in the appropriate combination, into the form (1.2), one verifies that the
discrete derivative of the Lyness mapping is identically satisfied, provided that An is periodic
of period N − 1.

Equating the last two terms of (3.1) we find the bilinear equation that τ should obey

Anτn−Nτn+N+1 + τn−N+1τn+N + τnτn+1 = 0 (3.2)

i.e. the bilinear form of the Lyness mappings. The interesting result here is that, for every N,
(3.2) is just a reduction of the Hirota–Miwa equation. This is obvious when A is a constant
and also when A is periodic with the right period, as will be discussed below.

The Hirota–Miwa is the discrete analogue of the KP equation. It is usually given in the
form:

Aτk−1,l,mτk+1,l,m + Bτk,l−1,mτk,l+1,m + Cτk,l,m−1τk,l,m+1 = 0 (3.3)
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or, equivalently,

Aτk,l,m+1τk+1,l+1,m + Bτk,l+1,mτk+1,l,m+1 + Cτk+1,l,mτk,l+1,m+1 = 0 (3.4)

where, a priori, A,B and C are constants. In what follows we will work with the form (3.4). In
order to retrieve (3.2) from it we perform a one-dimensional reduction. Starting from the triplet
(k, l,m) we introduce a single index n through n = k + Nl − Nm. Provided τk,l,m depends
only on n, we obtain precisely the bilinear form of the Lyness mapping with B = C = 1
and A constant. However, a gauge transformation allows us to choose for An any function of
period N −1. Indeed, if we consider the full three-dimensional equation (3.4) one can use any
function � of the three variables k, l,m as gauge function τk,l,m = �k,l,mθk,l,m, obtaining for
θ an equation of the same form as (3.4) but with coefficients that are now expressed in terms
of �. The problem of what choices of � are compatible with the one-dimensional reduction
is not extremely difficult but we do not even need to solve it in general. All we need is an
explicit expression that works for the present case. So let us take �(k, l,m) = F(k + l − m).
Starting from (3.4) for τ with B = C = 1 we get

AF(k + l − m − 1)F (k + l − m + 2)θk,l,m+1θk+1,l+1,m

+ F(k + l − m)F(k + l − m + 1)θk,l+1,mθk+1,l,m+1

+ F(k + l − m)F(k + l − m + 1)θk+1,l,mθk,l+1,m+1 = 0. (3.5)

Dividing by F(k + l −m)F(k + l −m + 1) we recover the same form as (3.4) with the constant
A becoming now a free function Ã of k + l − m only, as one can solve for F whatever Ã

is. We now want (3.5) to be reducible to (3.2). This means that Ã(k + l − m) must depend
on n = k + Nl − Nm only. If two sets of integers k1, l1,m1 and k2, l2,m2 are such that
n1 ≡ k1 + Nl1 − Nm1 and n2 ≡ k2 + Nl2 − Nm2 are equal, then the difference of the
arguments of Ã at these two points is (N −1)(l2 +m1 −m2 − l1), and thus the respective values
of Ã coincide provided that Ã has period (N − 1). This shows that we can indeed obtain (3.2)
with Ã any periodic function of period (N − 1) through this gauge transformation.

The relation of the Lyness mappings to the Hirota–Miwa equation establishes the
integrable character of the former: they are reductions of an integrable partial difference
equation. This relation explains also the quadratic complexity growth obtained in the previous
section. The Hirota–Miwa equation has quadratic growth for the degree of the iterates of a
given initial condition and thus the Lyness mappings, being a reduction of Hirota–Miwa, can
only have quadratic growth independently of their order, i.e. for all values of N.

4. On the invariants for the Lyness mapping

Since the Lyness mappings are just reductions of the Hirota–Miwa equation it is clear that
their invariants can be deduced from the invariants of the latter. However, a difficulty exists:
the invariants of the Hirota–Miwa equation are not known in full generality. In a recent paper
[10], Maruno and Quispel have proposed an approach for the construction of the conservation
laws of the Miwa and the Hirota–Miwa equations but they have given explicitly only a few
cases without presenting the general solution. Still these results are most useful, as we shall
see in what follows. The question of invariants of the Lyness mapping was also addressed by
Bastien and Rogalski [14] who presented explicit forms of a few such quantities. Still, despite
these advances the question remains open. In this section, we shall see how the results from
the bilinear formalism can be compared to those obtained directly in the nonlinear approach
for the first, low N, Lyness mappings.

Before examining specific cases, let us summarize what is known and start from a basic
observation. In section 1 we have presented two forms of the Lyness mappings (1.1) and
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(1.2), the second being the discrete derivative of the first. Given this relation it is clear that
the quantity a appearing in the form (1.1) is a constant of integration of the form (1.2). Thus,
when one works with the derivative form (as is the case for the bilinear expression (3.2)) one
should expect one extra invariant related to the constancy of a. Two invariants are known for
all values of N. They can be written as

G = (1 + xn)(1 + xn+1) · · · (1 + xn+N)

xn+1 · · · xn+N−1
(4.1)

and

H = (1 + xn + xn+1)(1 + xn+1 + xn+2) · · · (1 + xn+N−1 + xn+N)

xn+1 · · · xn+N−1
. (4.2)

Using the bilinear ansatz (and taking a strictly constant A) we can show that the first invariant
is in fact G = (−1/A)N−1. A third invariant was obtained by Gato et al [15], for N odd, larger
or equal to 5, but we are not going to write it explicitly here.

The case N = 2 is particularly simple. The existence of the two invariants, G and H, does
not create difficulties. First, they correspond to the derivative form (1.2) rather than (1.1).
Moreover, in the N = 2 case, these two invariants are not independent. A straightforward
calculation shows that G−H = a−1, where a is the parameter appearing in (1.1). Moreover,
the mapping (1.1) is a member of the QRT family and its invariant

I = xn + xn+1 +
xn

xn+1
+

xn+1

xn

+ (a + 1)

(
1

xn+1
+

1

xn

)
+

a

xnxn+1
(4.3)

leads to its integration in terms of elliptic functions. A simple calculation shows that I = H −3
where it is understood that one must use (2.1) in order to eliminate xn+2 in terms of a. Turning
now to the bilinear formalism one sees immediately that the mapping (3.2) for N = 2 is a
fifth-order one and thus needs extra invariants which involve the τ -function and cannot be
expressed in terms of x. Using the results of Maruno and Quispel it is indeed possible to
construct such invariants. We find for instance that

� = τ 2
n+1

τnτn+2
+

τ 2
n

τn+1τn−1
+

τ 2
n−1

τnτn−2
+

τn+1τn−1

τn−2τn+2
− A

τn+2τn−2

τn−1τn+1
(4.4)

in a conserved quantity of (3.2) for N = 2 which cannot be expressed in terms of x. Indeed,
given the expression of x in terms of the τ -function (3.1) one sees that there exists a gauge
of the latter which leaves x invariant: one can multiply the even-index τ -functions by a
constant k and the odd-index ones by 1/k. Any invariant given in τ -functions which can
be expressed in terms of x must be invariant under this gauge. This is not the case for �

and the use of the gauge makes it possible to split it into two parts (scaling like k2 and
1/k2 respectively). We have � = J + L where J = (

τ 2
n − Aτn+2τn−2

)/
(τn−1τn+1) and

L = τ 2
n+1

/
(τnτn+2) + τ 2

n−1

/
(τnτn−2) + τn+1τn−1/(τn−2τn+2). Following this logic we expect the

quantities J and L to be interchanged at each step. Therefore, their product JL should also
be an invariant (a straightforward calculation shows that this is indeed the case). Moreover, it
should be possible to express this last conserved quantity in terms of the variable x, since it is
invariant under the aforementioned gauge.

What is particularly interesting in the N = 2 case are the interrelations one can establish
between various mappings of QRT type. Indeed, starting from the invariant G and assuming
that its conserved value is g one finds that the quantity y = x + 1 obeys the mapping

yn+1yn−1 = g
yn − 1

yn

. (4.5)
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It is interesting to point out here that the JL invariant mentioned in the previous paragraph
has a particularly simple expression in terms of y. We find

JL = 1

ynyn+1
− 1

yn

− 1

yn+1
+ A(yn + yn+1 + 1). (4.6)

As a matter of fact (4.6) is just the QRT invariant of the mapping (4.5) given that A and the
conserved value g of G, are related through gA = −1. It is interesting to point out that,
expressed in terms of x, the QRT invariant JL can also be expressed in terms of the basic
ones. The relation can be written simply as

JL = a − 3

g
− 1. (4.7)

Similarly, starting from the invariant H with conserved value h and introducing z = x + 1/2
we find the mapping

(zn+1 + zn)(zn + zn−1) = h(zn − 1/2). (4.8)

Its QRT invariant is simply G, rewritten as

G = (zn+1 + 1/2)(zn + 1/2)

(
h

zn+1 + zn

− 1

)
. (4.9)

We see that, thanks to the underlying QRT structure, the Lyness N = 2 mapping (2.1) and
mappings (4.5) and (4.8) are intimately related.

We turn now to the case N = 3. Starting from (1.2) we obtain

(1 + xn)(1 + xn+2)

xn+1
= (1 + xn+2)(1 + xn+4)

xn+3
, (4.10)

which means that the quantity (1 + xn)(1 + xn+2)/xn+1 is a (parity-dependent) constant. We are
thus led to the introduction of two invariants

K = (1 + xn)(1 + xn+2)

xn+1
(4.11)

and

M = (1 + xn+1)(1 + xn+3)

xn+2
. (4.12)

The invariant G is thus simply G = KM , while some elementary calculations allow us to
show that H is not independent but can be expressed as a combination of K,M and a. As
in the N = 2 case, one can show that more invariants exist involving the τ -function which
cannot be expressed in terms of x as they are not invariant under the gauge as explained above.
Moreover, we can rewrite (4.11) and (4.12) as a mapping, introducing y = x + 1

yn+1yn−1 = p(yn − 1), (4.13)

where p is an even–odd depending parameter, i.e. pn = q + r(−1)n.
Finally, we have examined the case N = 4. This case is of interest because its complete

integration would necessitate three invariants and only two, G and H, are known. The bilinear
approach applied to this case, using the results of (MQ), does not allow us to surmount this
difficulty: no extra invariant involving the nonlinear variable x was found (though we did find
invariants in τ which cannot be written in terms of x).
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5. Conclusions

In this paper, we have examined the Lyness mappings from the integrability point of view.
Since the integrability of the first members of the family had already been established it was
natural to speculate on the possible integrability of the entire family. We have thus started by
applying two well-known integrability criteria on several (admittedly of low N, but well beyond
the known integrable ones) members of the Lyness family. The answer was unambiguous:
all of them satisfied both integrability criteria. Thus, it was reasonable to expect the Lyness
mappings to be integrable in all generality.

The integrability of the Lyness mappings was established thanks to the bilinear approach.
We have indeed shown that, by introducing the suitable ansatz and casting the mappings into a
bilinear form, it was possible to establish the fact that they are reductions of the Hirota–Miwa
(discrete KP) equation for all values of the parameter N. Based on this relation it would have
been possible to explicitly construct the invariants if the Lyness mappings in full generality be
it not for a minor (major?) problem: the invariants of the Hirota–Miwa equation are not fully
known. This in fact indicates a possible axis of research, namely to attempt the construction
of the conservation laws of the Hirota–Miwa equation in full generality. Once the latter are
obtained the derivation of the Lyness mappings invariants will be reduced to the level of a
simple exercise.
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